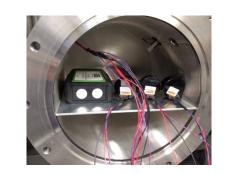


AQ standards: an update on standardization for low-cost sensors

Nick Martin,
National Physical Laboratory, UK
6th July 2023

Introduction


NPL ©

- Current AQ monitoring
- Low cost powered sensor (LCS) systems
- European Standardization activities
- NPL's testing facilities
- Update on Publicly Available
 Specification (PAS)
- Summary

Current AQ monitoring

Reference measurements: Automatic Urban Rural Network (AURN)

- 171 sites of which 16 are part of the Automatic London Network (ALN)
- Measure: NO, NO₂, O₃, CO, SO₂, PM₁₀ & PM_{2.5}

Reference network: data disseminated to the public on an hourly basis

https://uk-air.defra.gov.uk/data/

Well-characterised measuring system [Uncertainty, calibration, traceability, no reference to other sensor systems]

Indicative measurements: carried out using diffusion tubes (cheap, deploy over wide areas)

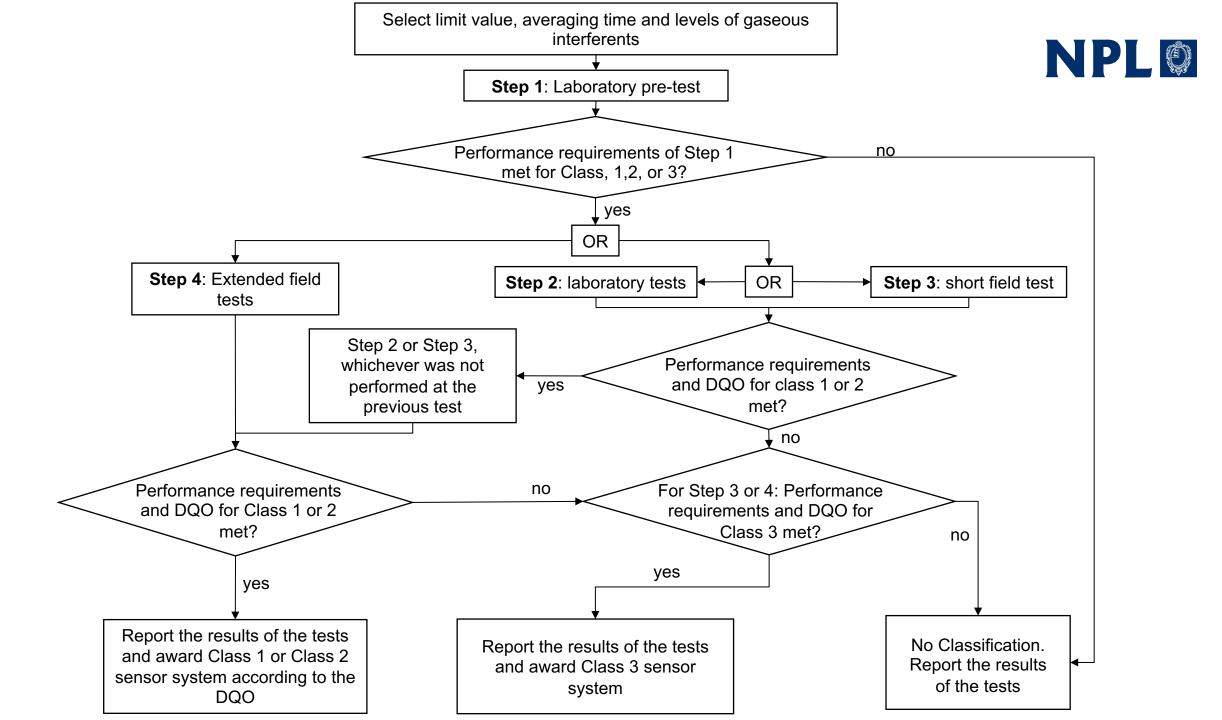
- LAs use as part of Local Air Quality
 Management (LAQM)
- Defra's UK Urban NO₂ Network (UUNN)
- After 28/35 day exposure, post chemical analysis, delivers average concentration

Low cost powered sensor systems

- Potential to transform AQ monitoring
- Many systems measure several pollutants: NO₂,
 NO, O₃ (electrochemical sensors), PM_{2.5}, PM₁₀ (light scattering optical particle counter), CO₂ (non-dispersive infrared), T, RH, and P
- Rapid measurements (1 min vs 1 month) over wide geographical area
- Ambitious new networks are being implemented, personalised exposure (journey planning), citizen science (schools, infrastructure buildings)
- Large scale data, new ways to calibrate may need to be developed
- Over promising on performance?
- Standardization required (distinguish good from bad products)

European Standardization activities

- European Committee for Standardization (CEN) (founded in 1961 with 34 national members) supports the consensus development of documentary European Standards (ENs) and Technical Specifications (TS)
- CEN TC264 WG42 has been developing a TS for low-cost sensors
- CEN/TS 17760-1: 2021, Air quality-Performance evaluation of air quality sensor systems-Part 1 Gaseous pollutants in ambient air
- TS is one stage down from a standard. Not yet validated
- UK will convert TS into an MCERTS document
- Part 2: Particulate matter in ambient air for PM₁₀ and PM_{2.5} (still in development)
- Final stages require agreement, translation of English version into French and German, and sending out for CEN enquiry before publication (2024?)
- Documents specify the general principles, including testing procedures and requirements, for the classification of performance of low-cost sensor systems


EU DQO (2008/50/EC)

Pollutant	Required uncertainty for reference method /%LV	DQO of Class 1 sensor system (indicative methods) / %LV	DQO of Class 2 sensor system (objective estimations) / %LV	DQO of Class 3 sensor system / %LV
SO ₂ , NO ₂ , NO,	15	25	75	200
O_3	15	30	75	200
benzene	25	30	100	200
PM ₁₀ and PM _{2.5}	25	50	100	200
Averaging periods (1, 8, 24 h, 1 year)				

Class 1 (indicative) and **Class 2** (objective estimations) for regulatory measurements. Uncertainty requirements defined in Directive 2008/50/EC

Class 3 sensor systems for non-regulatory purposes that have relaxed uncertainty requirements (specific research topics, educational purposes, citizen science

NPL's testing facilities

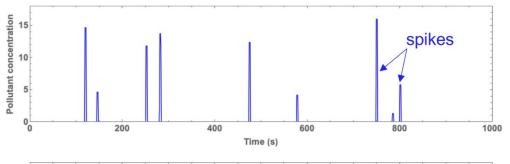
- Multiple Atmosphere Controlled Environment (MACE) facility
- **Step 1 tests:** Response time, lack of fit, repeatability, limit of detection
- Step 2 tests: Long term drift, cross sensitivities by gaseous interfering compounds, temperature effect, humidity effect, memory effect, power supply effect, wind velocity, pressure effect, electromagnetic fields effect
- Steps 3 and 4: Short or extended field tests with collocated reference instruments

Field Tests (2 seasons (May-Sept and Nov-Mar) NPL® of 40 days duration)

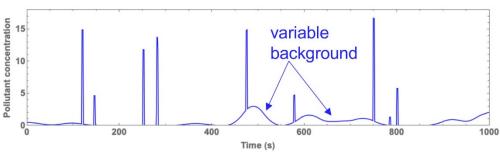
Pollutant	Area types		Site types		Short field test (Step 3)	Extended field test (Step 4)
	urban/suburban	rural	traffic	background	total sites	total sites
NO_2	X	-	X	X	2	4
NO	X	-	X	X	2	4
O_3	X	X	-	X	2	4
CO	X	-	X	X	2	4
SO_2	X	-	-	X	1	2
Benzene	X	-	X	-	1	2

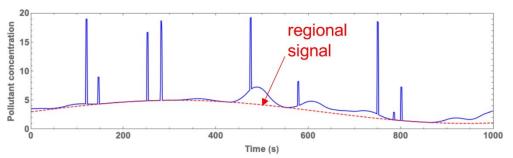
Additional laboratory tests for PM Humidity test to identify problems with over reading Coarse PM test to identify systems not measuring PM₁₀

Update on Publicly Available Specification (PAS)



- Defra sponsored BSI to commission NPL to develop UK PAS on Air quality monitors Selection, deployment, and quality control of mountable, static air quality monitors in ambient air – Code of Practice
- How to use LCS
- Not for compliance monitoring (Defra)
- Document identifies particular monitoring categories: single short-, long-term in one location, long term monitoring with a network
- Deployment and maintenance, calibration regimes and quality control, appendices: senor technologies in use, performance issues, performance evaluation, facilities for carrying out tests, cloud-based calibration, data quality bands, case studies (inter-device precision, collocation calibrations, location transfer)




 Combined response is composed of different source signatures

Sources (e.g. vehicles) *local* to sensor
- 'spikes'

Dispersed sources
~local to sensor
- 'variable background'

Regional signal

Summary

- Emphasised the role for standardization in use of LCS for AQ monitoring (CEN + BSI)
- LCS role additional to, and not replacing reference instruments
- New ways to operate networks
- PAS consultation now open
- https://standardsdevelopment.bsigroup.com/projects/2022-00710#/section to view the draft
- https://standardsdevelopment.bsigroup.com/Home/Help.
- The closing date for the public consultation is 5 July 2023
- Please send in case studies

Thank-you for listening

