

A negative emission internal combustion engine vehicle?

Felix Leach

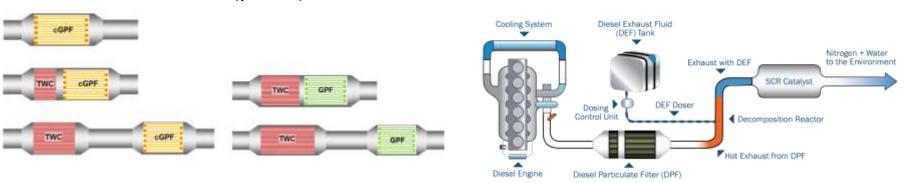
Clean Air Networks Conference, 6 July 2023

Pollution worldwide

• There are some very polluted places in the world

Where do emissions come from?

Ideal combustion


 $C_xH_y + O_2 \rightarrow CO_2 + H_2O$

• Combustion in air

 $C_{x}H_{y} + [O_{2}+(79/21)N_{2}] \rightarrow CO_{2} + H_{2}O + N_{2}$ Particulate • Real combustion is hot and happens quickly $C_{x}H_{y} + [O_{2}+(79/21)N_{2}] \rightarrow CO_{2} + H_{2}O + N_{2} + CO + NO_{x} + C + C_{x}H_{y} + ...$ GHG Pollutants

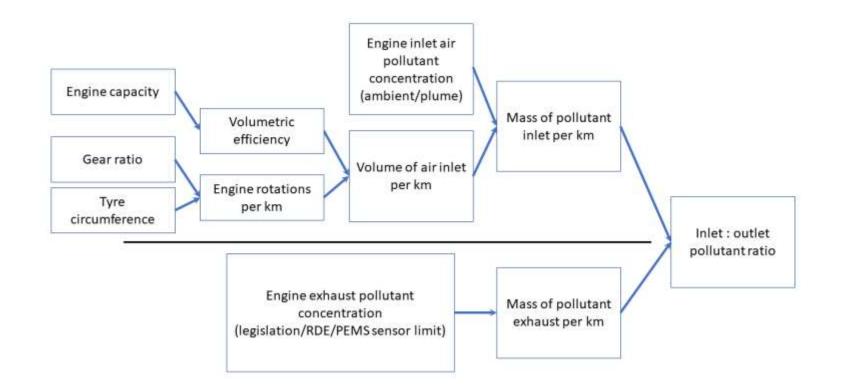
Cleaning up these emissions

- Today these emissions are cleared by "aftertreatment"
 - Historically known as a catalytic converter
- Modern internal combustion engines have excellent aftertreatment
- This leads to many vehicles having zero / "zero" pollutant emissions

Gasoline (petrol)

Diesel

Modern engines are clean – can that help?


- RDE levels measured as low as "zero" from many vehicles
 - But this instrumentation has a measurement accuracy
- Given vehicles carry around a "chemical factory" can we use this for good – people think so!

sions (e.g. 0.02 g/bhp-h or 15–20 mg/km). Indeed, there are even examples of vehicles having tailpipe unburned HC emissions below those in the ambient air at the engine's intake, so-called negative emission vehicles!

Methodology

Inlet concentrations

nlet NO ₂ concentration values considered in this work.		Inlet PM concentration values considered in this work.			
	NO ₂ (μg/ m ³)	Source		PM (μg/ m ³)	Source
Beijing, China, 2013	120	Cheng et al. (2018)	Moradabad, India, 2020 (PM2.5)	999	World's Air Pollution
London, UK, 2014	463	Griffiths (2014)	Baoding, China, 2015 (PM _{2.5})	900	Huang et al. (2018)
Delhi, India, 2015	233	Nandi (2018)	Sama, Asturias, Spain, 2022 (PM10)	883	World's Air Pollution
WHO 24-h exposure guideline	25	World Health Organisation WHO (2021)	WHO 24-h exposure guideline (PM10)	45	World Health Organisation WHO (2021)
WHO annual mean exposure guideline	10	World Health Organisation WHO (2021)	WHO annual mean exposure guideline (PM ₁₀)	15	World Health Organisation WHO (2021)
Plume 1 from preceding vehicle ³	2927	Janssen and Hagberg (2020)	WHO 24-h exposure guideline (PM _{2.5})	15	World Health Organisation WHO (2021)
Plume 2 from preceding vehicle [®]	1250	Tajdaran et al. (2022)	WHO annual mean exposure guideline (PM _{2.5})	5	World Health Organisation WHO (2021)

 $^{\rm a}\,$ These plumes will be comprised of NO_x rather than $NO_2,$ but are treated as $NO_2.$

Outlet concentrations

	NO ₂ (mg/ km)	Source
Euro 6d	60	Senecal and Leach (2021)
China 6	35	Senecal and Leach (2021)
Best RDE	1	Transport for London (2014)
"Zero" (as defined by the accuracy of the PEMS)	23.8 (μg/ km)	Weiss et al. (2011)

Vehicle exhaust PM concentration values considered in this work.

	PM (mg/ km)	Source
Euro 6d	4.5	Senecal and Leach (2021)
China 6	3.0	Senecal and Leach (2021)
Best RDE	0.3	Transport for London (2014)
"Zero" (as defined by the accuracy of the PEMS)	5 (µg/km)	Oberguggenberger et al. (2012)

Two cases considered

	Typical case	Extreme case
Tyre circumference (m)	1.95	2.20
Gear ratio (-)	1.121 (fourth gear)	10 (first gear)
Engine capacity (L)	1.199	7.998
Engine volumetric efficiency (%)	40	100

Results – typical case

Inlet:outlet NO2 ratio for various inlet and outlet scenarios for the typical case. Highlighted cells indicate where	e :
the ICEV acts as a NO2 reduction device.	

Inlet\Exhaust	Euro 6d	China 6	Best RDE	"Zero" as measured by PEMS
Plume 1	0.01	0.01	0.40	16.95
Plume 2	0.00	0.00	0.17	7.24
London, UK, 2014	0.00	0.00	0.06	2.68
WHO 24-hour exposure guideline	0.00	0.00	0.00	0.14
WHO annual mean exposure guideline	0.00	0.00	0.00	0.06

Inlet:outlet PM ratio for various inlet and outlet scenarios for the typical case. Highlighted cells indicate where the ICEV acts as a PM reduction device.

Inlet\Exhaust	Euro 6d	China 6	Best RDE	"Zero" as measured by PEMS
Moradabad, India, 2020 (PM2.5)	0.03	0.05	0.46	27.54
WHO 24-hour exposure guideline (PM ₁₀) WHO annual mean exposure guideline	0.00	0.00	0.02	1,24
(PM ₁₀)	0.00	0.00	0.01	0.41
WHO 24-hour exposure guideline (PM _{2.5}) WHO annual mean exposure guideline	0.00	0.00	0.01	0.41
(PM _{2.5})	0.00	0.00	0.00	0.14

Results – extreme case

Inlet\Exhaust	Euro 6d	China 6	Best RDE	"Zero" as measured by PEMS
Plume 1	0.89	1.52	53.20	2235.03
Plume 2	0.38	0.65	22.72	954.49
London, UK, 2014	0.04	0.06	2.18	91.63
WHO 24-hour exposure guideline	0.01	0.01	0.45	19.09
WHO annual mean exposure guideline	0.00	0.01	0.18	7.64

Inlet:outlet NO_2 ratio for various inlet and outlet scenarios for the extreme case. Highlighted cells indicate where the ICEV acts as a NO_2 reduction device.

Inlet:outlet PM ratio for various inlet and outlet scenarios for the extreme case. Highlighted cells indicate where the ICEV acts as a PM reduction device.

Inlet\Exhaust	Euro 6d	China 6	Best RDE	"Zero" as measured by PEMS
Moradabad, India, 2020 (PM2.5)	4.04	6.05	60.53	3631.82
WHO 24-hour exposure guideline (PM ₁₀) WHO annual mean exposure guideline	0.18	0.27	2.73	163.60
(PM ₁₀)	0.06	0.09	0.91	54.53
WHO 24-hour exposure guideline (PM _{2.5}) WHO annual mean exposure guideline	0.06	0.09	0.91	54.53
(PM _{2.5})	0.02	0.03	0.30	18.18

- Can a modern internal combustion engine vehicle emit less PM / NO₂ than background i.e. clean the air?
- YES!
- BUT: the circumstances when this happens are likely to be extremely limited
- However, when considering the plume of a vehicle in front (where data is limited) this is more likely, particularly for gross emitters
- Simple spreadsheet tool available for your own values:
 - <u>https://ars.els-cdn.com/content/image/1-s2.0-S1352231022005532-mmc1.xlsx</u>

Atmospheric Environment

Volume 294, 1 February 2023, 119488

A negative emission internal combustion engine vehicle?

Felix Leach 🖾

Thank you for your attention

Felix Leach felix.leach@eng.ox.ac.uk

