Enabling the Remote Measurement of Air Pollution Emissions in UK Ports

Shona Wilde¹ James Lee¹ Elin McCormack² Connor McGurk² Dan Peters² Vicky Naylor³ Joshua Chesterman³ Max Ruffles³ James Thomas³

¹Wolfson Atmospheric Chemistry Laboratories, University of York, YO10 5DD

²STFC Rutherford Appleton Laboratory, Harwell Oxford Campus, Didcot, OX11 0QX

³J.E.T. Engineering, Ditton Rd, Widnes, WA8 0TH

5th July 2023

Project aim:

Assess the potential of Low Cost Sensors (LCS) to monitor air pollution in ports and calculate emission ratios from individual ships

- Design, characterise and test a LCS package
 - AlphaSense B-Series (NO, NO₂, SO₂), smartGAS flowEVO (CO₂)
- Perform field measurements to monitor emissions of NO_x, SO₂, CO₂ and PM from a UK port
- 3. Compare the LCS with a suite of reference, high sensitivity instrumentation
 - Airyx ICAD (NO_x), Thermo 43i-TLE (SO₂), Los Gatos UGGA (CO₂)

Ship emissions from the Port of Tyne

- 26 plumes were sampled from 18 unique vessels
- lacksquare Average sulfur fuel content (SFC) $= 0.04 \pm 0.03\%$ lower than the 0.1% limit
- \blacksquare Average $\Delta NO_x/\Delta CO_2=0.008\pm0.0002$ ppb ppb⁻¹
 - Higher than road vehicles Euro 6 diesel: 0.0017–0.0026 ppb ppb⁻¹

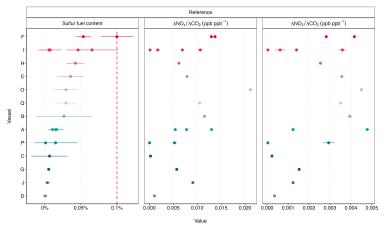


Figure 1: Sulfur fuel content (SFC) and enhancement ratios of $\Delta NO_2/\Delta CO_2$ and $\Delta NO_X/\Delta CO_2$ for individual ship plumes.

Suitability of low cost sensors

- \blacksquare Good agreement between the reference and LCS data for $\Delta \text{NO}_2/\Delta \text{CO}_2$
- For $\Delta NO_x/\Delta CO_2$, the correlation was reasonably strong (R² = 0.68) but the LCS values were significantly lower (slope = 0.29)
 - Likely due to negative interference in high NO₂, low O₃ plumes on the NO sensor
- $\Delta SO_2/\Delta CO_2$ LCS values were $5\times$ higher than the reference measurements
 - SO₂ sensor measurement is not sensitive enough for this calculation

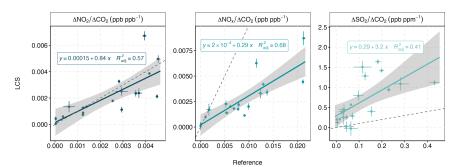


Figure 2: Comparison between enhancement ratios calculated using reference and LCS data.

For NO₂, representative values for emission factors from ships can be obtained from LCS

Dashed line is the 1:1 line