What research is needed to understand and manage air pollution exposure in indoor public spaces and transport environments?

Ruth Calderwood Air Quality Manager, City of London Corporation

()Ĉ 0

Issue

- Which spaces: offices, schools, community hubs, railway stations, markets
- Range of sources building materials, furnishings, fire retardants, combustion, solvents, cleaning products, electronic equipment, people
- Ingress of poor air quality becoming less of an issue?

Need to understand

- Health impact, toxicity of PM type, asthma triggers
- Synergistic effect
- Quantification. Personal exposure wearable monitors
- Potential solutions test

Standards

- WHO guidelines v Workplace exposure limits, e.g. NO2
 - WHO 2010 Guideline: 1hr 200μg/m3, annual 40μg/m3
 - WEL 2020 8hr 960μg/m3, 15 min 1910μg/m3
- BREEAM / WELL building standard / BS EN 16798 -1:2019

London

Transport environments

- Smaller range of sources, outdoor air quality has more of an impact on air quality inside
- Some VOCs fabric and cleaning products, de-icing etc
- Vehicle tailpipe emissions declining, number of petrol vehicles may increase (VOCs), PM may also increase (heavier vehicles and increase in number)
- Research already undertaken e.g. Emissions Analytics
- Exposure comparison by mode, research e.g. ERG

Recommendations:

- Pull all information together e.g. AQEG report, IAQM Air Quality Guidance, ERG research, Emissions Analytics
- Monitor indoor public spaces / exposure
- Test out solutions for impact
- Facilitate health research e.g. synergistic effects, PM toxicity
- Building design thermal efficiency v ventilation

What research is needed to understand and manage air pollution exposure in indoor public spaces and transport environments?

> Dr Matt Loxham University of Southampton

Research Gaps

- What is "the environment"?
 - What are the contributing sources?
 - What are their characteristics, and the characteristics of the contributions?
 - How does this relate to health?
- What are the most effective ways to reduce dose?
 - Reducing emissions
 - Reducing exposure to emissions
 - Do we need to do anything?

"Railway"

Andersen et al. Particle and Fibre Toxicology https://doi.org/10.1186/s12989-019-0306-4 (2019) 16:21

RESEARCH Health effects of exposure to diesel exhaust

in diesel-powered trains

Maria Helena Guerra Andersen^{1,2*}, Marie Frederiksen², Anne Thoustrup Saber², Regitze Sølling Wils^{1,2}, Ana Sofia Fonseca², Ismo K. Koponen², Sandra Johannesson³, Martin Roursgaard¹, Steffen Loft¹, Peter Møller¹ and Ulla Vogel^{2,4}

Table 1 Black carbon, ultrafine particles and nitrogen oxides concentrations and contrast between diesel and electric trains

		Table T black carbon, utrainte particles and	milliogen oxides concentrat	ions and contrast between c	leser and electric trains
D. C.L. JEL T		Exposure	Electric ($n = 29$)	Diesel ($n = 54$)	Mean difference (95% CI)
Particle and Fibre To	oxicology	Black carbon (µg/m³)	1.8 (0.5)	10.3 (2.0)	8.5 (7.9; 9.1)***
		Ultrafine particles from DiscMini (#/cm ³) ^{a)}	8100 (2400)	189,200 (91,900)	181,000 (153,700; 208,400)***
Open	Access	Ultrafine particles from NanoTracer (#/cm ³)	9100 (3500)	133,400 (52,100)	124,300 (110,000; 138,500)***
sel exhaust		NOx (µg/m³)	45 (16)	363 (73)	317 (297; 338)***
	Check for updates	NO ₂ (μg/m ³)	18 (9)	54 (16)	36 (31; 42)***

The exposure was assigned to study participants (study participants rode the trains in groups of different sizes. The exposure average levels for each calendar day were assigned to all members of the relevant group). Exposure levels in both scenarios are presented as mean and standard deviation. PM2.5, polycyclic aromatic hydrocarbons and aldehydes are not assigned to study participants, as the data were not collected throughout all the study period.^{a)} missing values for DiscMini equipment indexed to four study persons for the exposure scenarios (n = 46 diesel and n = 25 for electric). ***p < 0.001

Day 1 (ME 1509)

Cite This: Emviron. Sci. Technol. 2019, 53, 4579-4587 cience & lechnoloai

Exposure to Air Pollution inside Electric and Diesel-Powered Passenger Trains

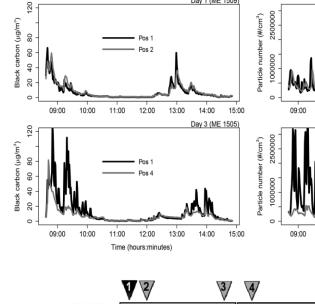
Maria Helena G. Andersen,^{**14}® Sandra Johannesson,[†] Ana Soña Fonseca,[†] Per Axel Clausen,[†] Anne Thoustrup Saber,[†] Martin Roursgard, [†] Katrin Loeschner,[†] Ismo K. Koponen,[†] Steffen Loft,[†] Ulla Vogd,^{†,†} and Peter Møller[†]

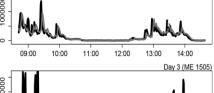
Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark

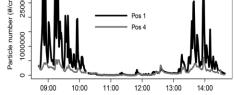
^bThe National Research Centre for the Working Environment, Lersø Parkalle 105, DK-2100 Copenhagen Ø, Denmark Department of Occupational and Environmental Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg Sweden

National Food Institute and ¹Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Den

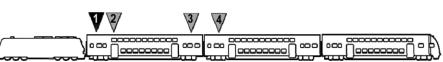
Pos 1


Pos 2


Article

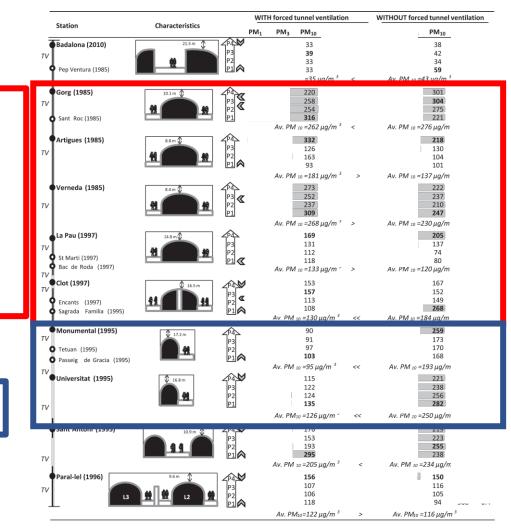

Day 1 (ME 1509)

Biomarker		Electric (mean ± SD)	Diesel (mean \pm SD)	% Change (95% Cl)	<i>p</i> -value
	FVC (L)	4.20 ± 1.24	4.18 ± 1.16	-2.3 (-4.7; 0.25)	0.077
	FEV1 (L)	3.32 ± 0.96	3.24 ± 0.96	-3.6 (-5.5; -1.6)	0.0003***
	FEV1/FVC (%)	79.1 ± 6.8	77.2 ± 9.2	-1.8 (- 3.8; 0.2)	0.073
	PEF (L/s)	7.26 ± 2.13	7.15 ± 2.42	-5.6 (- 10.7; - 0.5)	0.031*
	SB (lesions/10 ⁶ bp)	0.12 ± 0.13	0.18 ± 0.13	46.3 (5.0: 100.9)	0.025*


Exposure levels	FVC	FEV1	FEV1/FVC	PEF	LF	DNA SB
UFP (NanoTracer)	\rightarrow	$\downarrow \downarrow \downarrow \downarrow$	\rightarrow	\rightarrow	↑↑	↑↑↑
UFP (DiscMini)	-	$\downarrow\downarrow$	-	$\downarrow \downarrow$	↑↑	$\uparrow \uparrow \uparrow$
BC	\rightarrow	$\downarrow\downarrow\downarrow\downarrow$	\downarrow	\downarrow	↑↑	↑↑
NOx	\rightarrow	$\downarrow\downarrow\downarrow\downarrow$	\downarrow	$\downarrow\downarrow$	$\uparrow\uparrow\uparrow$	^
NO ₂	\downarrow	↓	-	$\downarrow \downarrow \downarrow \downarrow$	$\uparrow\uparrow\uparrow$	-

Time (hours:minutes)

Ultrafine particles



Double track tunnel

- AQ worse than single track
- Older stations have more PM than newer stations
- In older double track stations, less effect of stopping forced ventilation (or might improve AQ) but less consistent effect in newer stations.
- With ventilation PM peak further from access point
- Without ventilation PM increased near access points
- Stations with P1 access show clearest platform gradients
- Badalona has 7 in-station fans and is unusually spatious

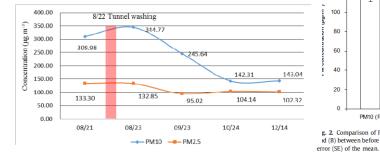
Single track tunnel

Much higher PM if forced ventilation off

T. Moreno et al. / Atmospheric Environment 92 (2014) 461-468

Solutions?

Aerosol and Air Quality Research, 17: 1527–1538, 2017 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2017.03.0120


Analysis of Aerosol Composition and Assessment of Tunnel Washing Performance within a Mass Rapid Transit System in Taiwan

Ying-Yi Chen¹, Chung-Yen Lu^{2,3}, Pei-Chun Chen^{4,5}, I-Fang Mao^{6,7*+}, Mei-Lien Chen^{1*+}

¹ Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming University, Taipei 11221, Taiwan

tappe 11221, Lawan Department of Sport and Health Management, Da-Yeh University, Changhua 51591, Tatwan Department of Chinese Medicine, Tappe Hospital, Munistry of Health and Weifare, New Tappel City 24213, Tatwan Department of Public Health, China Medical University, Tatkinga 10402, Tatwa

Separament of Medical Research, China Medical University Rospital, Taiching 40447, Taiwan Deparament of Medical Research, China Medical University Rospital, Taiching 40447, Taiwan Deparament of Occupational Safety and Health, Ching Shan Medical University, Taiching 40201, Taiwan Deparament of Medical Research, Ching Shan Medical University Hospital, Taiching 40201, Taiwan

Atmospheric Environment

e 40 (2012) 210-22

Before After

PM10 (Outdoor)

A noticeable shift in particulate matter levels after platform screen door installation in a Korean subway station

Ki-Hyun Kim^{4,*}, Duy Xuan Ho⁴, Jae-Sik Jeon^b, Jo-Chun Kim^{4,d} 3 Sping University, 20 Goon Ju Dong, Scuil 145-747, Republic of Roma athare of Public Health and Environment, Social 127-734, Republic of Roma Fasion, Ranitak University, Social 145-707, Republic of Roma ring, Ranitak University, Social 145-707, Republic of Roma

140

120

100

80

60

40

20

0

PM10 (Platform)

PM2.5 (Platform)

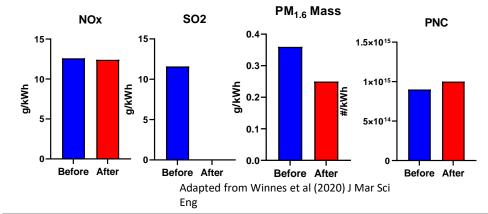
g. 2. Comparison of PM concentration: (A) between indoor platform and outdoors

Id (B) between before and after PSD installation. Here error bar is drawn by standard

Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains

Youn-Suk Son,1 Jae-Sik Jeon,2 Hyung Joo Lee,1 In-Cheol Ryu,2 and Jo-Chun Kim3,* 1 Exposure, Epidemiology, and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA ²Seoul Metropolitan Research Institute of Public Health and Environment, Seoul, Republic of Korea

³Department of Environmental Engineering, Konkuk University, Seoul, Republic of Korea


*Please address correspondence to: Jo-Chun Kim, Department of Environmental Engineering, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Republic of Korea; e-mail: jckim@konkuk.ac.kr

		(from M		efore PSDs 7, 2008 to May	7, 2008)			(from Apri		r PSDs 10 to May 6,	2010)
In	door PM ₁₀ (J	ug/m ³) ^{a)}	0	utdoor PM ₁₀ (µ	.g/m ³) ^{b)}	1	ndoor PM ₁₀ (j	μg/m ³) ^{a)}		Outdoor Pl (µg/m ³)	
SN ^{e)} (n)	Mean (SD)	Min- max	SN ^{e)} (n)	Mean (SD)	Min	N ^{e)} (n)	Mean (SD)	Min- max	SN ^{e)} (n)	Mean (SD)	Min- max
12	96.4 (36.5)	60.5-146.4	66	74.6 (36.4)	35.3-127.9	4	126.0 (67.7)	78.1-173.8	22	47.0 (2.0)	45.6-48
14	88.1 (12.8)	75.3-108.9	77	52.4 (16.6)	33.2-84.2	4	63.8 (14.4)	53.6-74.0	22	56.6 (11.2)	48.7-64
12	95.2 (27.3)	67.9-137.1	66	60.2 (24.6)	31.2-102.5	4	106.0 (24.8)	88.4-123.5	22	36.8 (6.7)	32.0-41
12	67.9 (23.3)	43.7-95.5	66	83.8 (30.9)	45.3-123.9	4	110.1 (41.8)	80.5-139.6	22	58.5 (26.5)	39.7-77
12	91.6 (12.2)	74.7-107.9	66	121.4 (159.4)	33.8-445.4	4	81.4 (7.2)	76.3-86.5	22	60.2 (0.9)	59.6-60
10	73.3 (8.7)	58.0-79.0	55	70.4 (9.3)	57.9-82.1	4	148.8 (8.5)	142.8-154.8	22	17.1 (7.7)	11.6-22
10	63.6 (8.4)	50.2-70.9	55	50.2 (17.4)	25.4-69.8	4	108.4 (10.0)	101.3-115.5	22	45.3 (8.9)	39.0-51
10	68.3 (10.3)	50.4-76.4	55	72.2 (18.6)	53.8-96.2	4	92.1 (8.0)	86.4-97.7	22	54.6 (14.9)	44.1-65
92	80.5 (13.6)	43.7-146.4	506	73.2 (22.6)	25.4-445.5	32	104.6 (26.2)	53.6-173.8	176	47.0 (14.4)	11.6-77

Shipping

An investigation of air pollution on the decks of 4 cruise ships

Ryan David Kennedy, PhD, MAES Department of Health, Behavior & Society Johns Hopkins University, Bloomberg School of Public Health

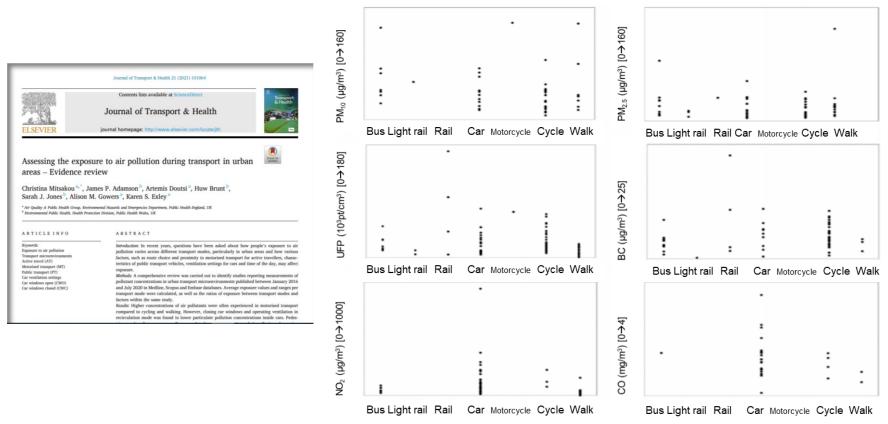
Effect	HFO	DF
Pro-inflammatory signaling	<u>↑</u>	-
Oxidative stress	\uparrow	-
Cell homeostasis	\uparrow	-
Response to chemicals	\uparrow	$\downarrow\uparrow$
Cellular stress response	↑	\uparrow
Motility	↑ (↑
Endocytosis	↑	\uparrow
Cellular signalling	MAPK, TGF beta, PDGF, EGF, GPCR	ID, kinase cascade
Energy metabolism	-	$\downarrow\uparrow^{\mathbf{x}}$
Protein synthesis	-	\downarrow
Protein degradation	-	\uparrow
RNA metabolism	-	\downarrow
Chromatin modifications	-	↑
Cell junction and adhesion	-	↓↑ ×

Table 2. Average and maximum particulate matter concentrations measured in different environments on the deck of the ship Carnival Freedom

		IN PORT			AT SEA	
	Average particle count Pt/cc	Minutes of monitoring	Maximum 1-minute concentration Pt/cc	Average particle concentration Pt/cc	Minutes of monitoring	Maximum 1-minute concentration Pt/cc
Stern	5,740	89	31,367	9,702	512	47,823
Track	11,880	73	56,091	12,747	512	73,621
Bow	15,604	100	119,983	1,540	523	14,533

Table 4. Average and maximum particulate matter concentrations measured in different environments on the deck of the ship Emerald Princess

		IN PORT			AT SEA	
	Average particle count Pt/cc	Minutes of monitoring	Maximum 1-minute concentration Pt/cc	Average particle concentration Pt/cc	Minutes of monitoring	Maximum 1-minute concentration Pt/cc
Upper Stern	6,502	42	15,416	30,647	269	144,500
Lower Stern	8,234	42	17,140	32,628	268	157,716
Bow	33,408	43	126,786	5,167	257	24,696


Oeder et al (2015) PLoS ONE 10(6):e0126536

Transport environments and air pollution exposure

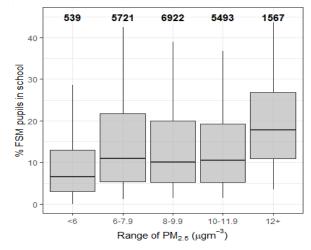
Dr Christina Mitsakou Air Quality and Public Health

Exposure to air pollution in transport

https://www.sciencedirect.com/science/article/pii/S2214140521000943

Exposure to air pollution in transport – study limitations and research recommendations

Study designs


exposure measurements using different transport modes at the same time, in the same location and on as similar routes as practical.

Consistency in the monitoring techniques

will allow the investigation of **inequalities in transport** and associations between specific population groups with exposure to poorer air quality while travelling.

Vulnerable population and inequalities

Air quality at school locations and deprivation

Children on free school meals, and from a minority ethnic background, are more likely to attend a school co-located with high outdoor PM_{2.5}

Osborne, Uche, Mitsakou, Exley, Dimitroulopoulou (2021) Air quality around schools: Part II – Mapping $PM_{2.5}$ concentrations and inequality analysis, *Environmental Research* 197: 111038.

13 Transport environments and air pollution exposure

Need for monitoring of vulnerable populations (eg children, elderly, deprived communities) exposure to air quality during commuting and other activities

Holistic assessment of transport interventions

Recommending interventions based on holistic assessments that would consider (a few examples):

Vehicle transport

Negative impacts on the environment (pollutant emissions), climate change, road traffic etc

Active travel

Health co-benefits related to active travel

What research is needed to understand and manage air pollution exposure in indoor spaces and transport environments?

Nick Molden

19 December 2022

ASSURED | INDEPENDENT | RESPONSIVE

Our Belief

When it comes to the pursuit for improved air quality, we believe in the power of clarity, transparency and integrity. With real-world data we can meet emissions challenges – instilling trust and confidence in our industry partners and public.

It's with our commitment and independence we are able to make a significant contribution toward positive change and to achieve enduring results.

Research gaps

- 1. TRANSITION Network multi-modal study follow-on work
- 2. Private vehicle exposures comparative rating vehicles
- 3. Commercial and industrial vehicle exposures workplace risk

Priority pollutants

- Particle number
 - Mass already well measured generally
 - Growing concern about health effects of nanoparticles
 - Broad spectrum volatile and semi-volatile organic compounds
 - Often low concentrations
 - But high toxicity potential
 - Emitted everywhere especially plastics, solvents, tyres, tailpipe
 - Secondary organic aerosol formation

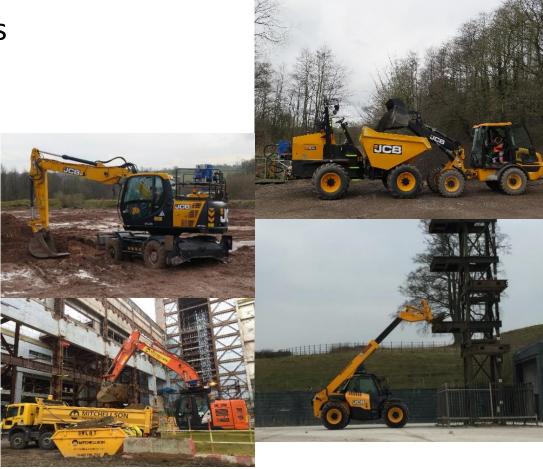
Carbon dioxide

Safety risk while operating vehicles and machinery

TRANSITION study

- Journeys typically involve high variations in exposure concentrations
- Priority to clean up stations and interchanges ahead of upgrading rolling stock
- Improve filtration and ventilation on coach
- Extending range of active travel
- Restrict smoking and food cooking
- Reproduction of results
- Specific problem areas for further research

Private cars – CWA17934


- New standardised methodology for measuring incabin pollution
- Product of CEN Workshop 103
- Measurement of PN ingress and CO₂ build-up
- Light-duty vehicles
- Real on-road protocol
- Metric is ratio between external and internal concentrations proven repeatability
- Objective to compare between different vehicles or different filters

Heavy-duty operations

- Harsh environments
- Long hours
- Health and safety at work, duty of care
- In-cabin exposures
- Local air quality impact

Thank you.

Nick Molden

Chief Executive Officer

nick@emissionsanalytics.com

+44 (0)20 7193 0489

ASSURED | INDEPENDENT | RESPONSIVE

ASSURED | INDEPENDENT | RESPONSIVE

Assured

Emissions testing in real-world conditions brings challenges that experience anticipates and expertise overcomes. We deliver.

Independent

Objectivity and candour are the driving forces in all our work, so you know the facts.

Responsive We're fast on our feet so we can conduct emissions testing when and where we're needed.

Indoor Public Spaces and Transport Environments

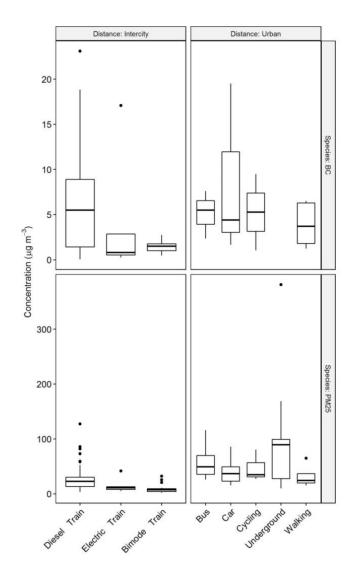
David Green

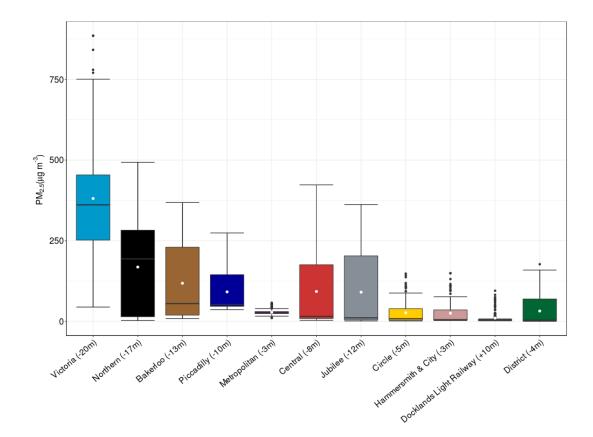
Clean Air Research Futures Group 19th December 2022

NIHR Health Protection Research Unit in Environmental Exposures and Health at Imperial College London

MRC Centre for Environment & Health

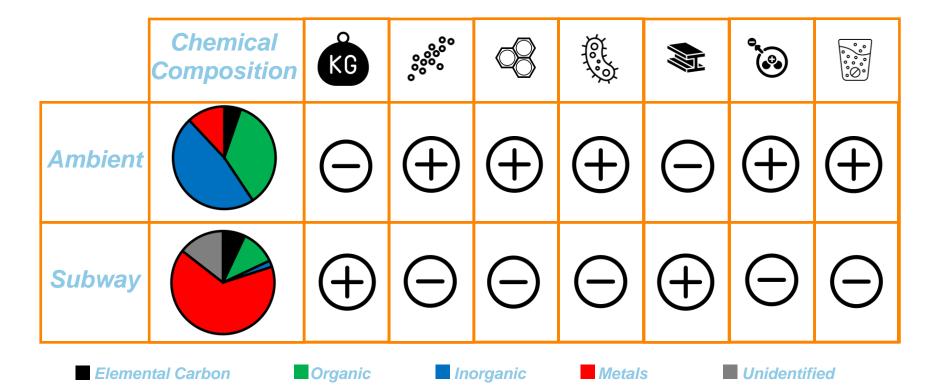
Medical Research


Council

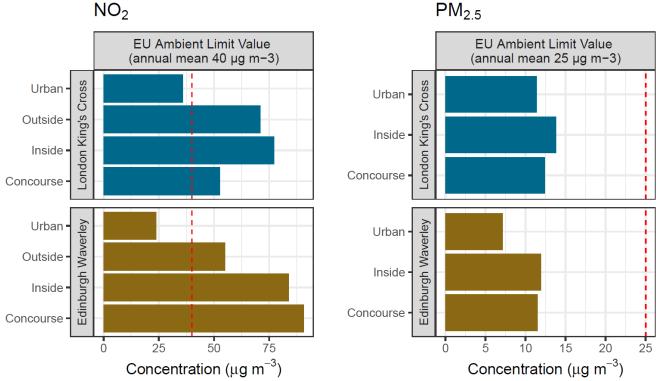

Imperial College London

Indoor and Transport Environment Challenges High concentrations

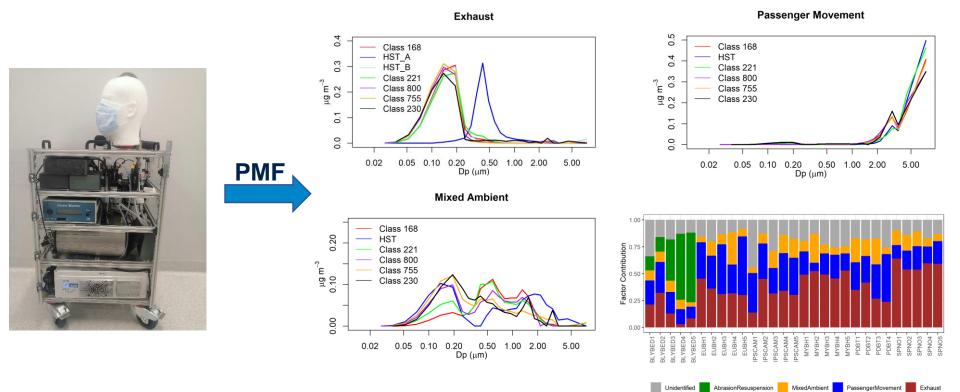
- Substantial spatial and temporal variability
- Generally short term exposure
- Different physical and chemical composition of PM
- Uncertainty around health effects
- Poorly characterised source indoor and outdoor contributions



Passenger Exposure to PM_{2.5}



J.D. Smith et al. PM_{2.5} on the London Underground (2020) Environment International

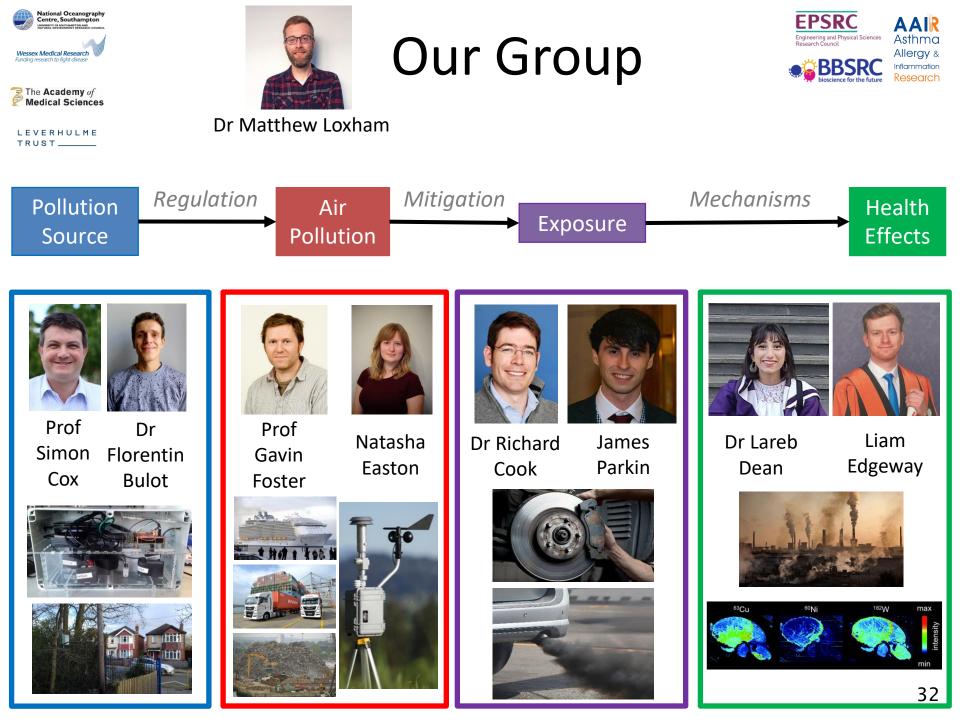

PM_{2.5} Physical and Chemical Composition

Concentrations in Enclosed Stations

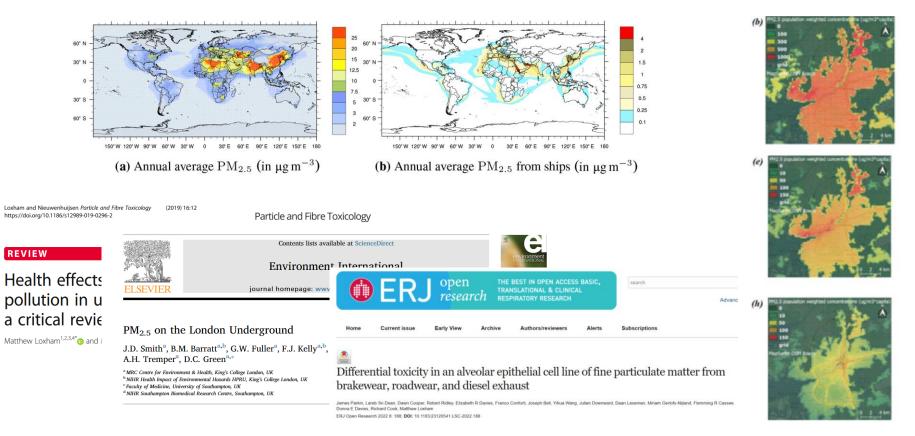
On-board Diesel Train Source Apportionment

Requirements

- Improved exposure assessment
 - Measurements reflecting spatial and temporal variability
 - Quantify measurement uncertainty
- Understand source contribution
 - Overcome methodological challenges in measurement and data analysis approaches
- Explicit links to health impacts
 - New health studies reflecting exposure to representative mixtures
 - Complementary in vivo / in vitro exposures, epidemiological studies of public and working populations
- Solutions driven approaches to minimise exposure now
 - Emission abatement requires significant investment
 - Recognise that irrefutable health impact quantification will not be immediate
 - Build exposure reduction into all transport investment planning


What research is needed to understand and manage air pollution exposure in indoor public spaces and **transport environments**?

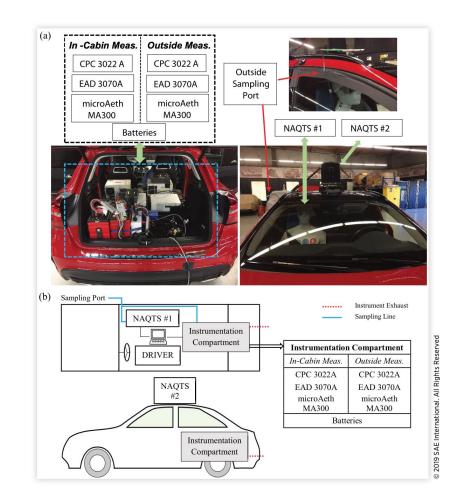
Dr Lareb Dean


Postdoctoral Research Fellow University of Southampton I.s.n.dean@soton.ac.uk

19th December 2022

Current evidence and gaps

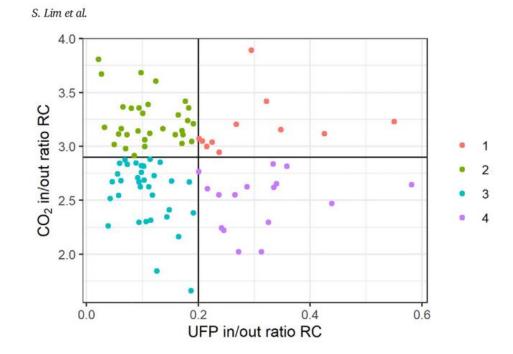
- Transboundary air pollution
- Emerging health effects
- Indoor air pollution: occupational and commuter exposure


NAQTS What research is needed to understand and manage air pollution exposure in indoor public spaces and transport environments?

> Douglas Booker, CEO @ NAQTS Clean Air Research Futures Group 19th December 2022

Vehicle Interior Air Quality (VIAQ)

- ~100 minutes per day in vehicles (Dong et al. 2004)
- Immediate proximity to significant pollutant sources (other vehicles)
 & high outdoor concentrations
- Vehicle km travelled projected to
 - ↑ ~ 14% from 2019 to 2030 (DfT)

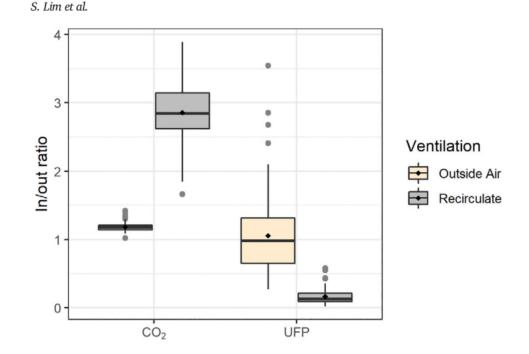

Dong, L.; Block, G.; Mandel, S. Activities contributing to total energy expenditure in the Unites States: Results from the NHAPS study. Int. J. Behavioral Nutrition Phys. Activity 1, 4 (2004)

Pham, Liem, Nick Molden, Sam Boyle, Kent Johnson, and Heejung Jung. 2019. "Development of a Standard Testing Method for Vehicle Cabin Air Quality Index." SAE International Journal of Commercial Vehicles 12 (2). https://doi.org/10.4271/02-12-02-0012.

Ƴ **₴ (;)** N A Q T S

Understanding and managing VIAQ – The Vehicle

- How does the vehicle influence VIAQ?
- CWA17934
- UFP largely ingress of outdoor air pollution
- CO₂ 'stuffiness' concentration
- How does this change with a shifting vehicle fleet?
- What about in other types of vehicles? Buses, taxis, trains, trams, etc.


Fig. 4. Scatterplot comparing CO₂ and UFP in/out ratio for recirculate (RC) ventilation settings for 92 vehicle models, split into quadrants to group vehicles. Group 1 are vehicles which have an in/out UFP ratio > 0.2 and in/out CO₂ ratio > 2.9, group 2 an in/out UFP ratio < 0.2 and in/out CO₂ ratio > 2.9, group 3 an in/out UFP ratio < 0.2 and in/out CO₂ ratio < 2.9 and group 4 an in/out UFP ratio > 0.2 and in/out UFP ratio < 0.2 and group 4 an in/out UFP ratio > 0.2 and in/out CO₂ ratio > 2.9.

Lim, Shanon, Ian Mudway, Nick Molden, James Holland, and Benjamin Barratt. 2021. "Identifying Trends in Ultrafine Particle Infiltration and Carbon Dioxide Ventilation in 92 Vehicle Models." Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.152521.

Understanding and managing VIAQ – The Driver

- How does occupant behaviour influence VIAQ?
- What information can be provided to drivers for manual HVAC control?
- How much control do drivers actually have on managing their VIAQ exposures?

Fig. 1. Boxplot of CO2 and UFP in/out ratios for the 92 vehicles tested for OA and RC ventilation settings. Bold horizontal black lines denote the median in/out ratio; boxes extend from 25th to 75th percentile; vertical lines indicate 1.5 times the interquartile range; with grey dots being ratios outside the range of these values. Mean in/out ratios are represented by black diamonds.

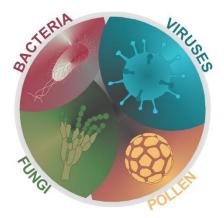
Lim, Shanon, Ian Mudway, Nick Molden, James Holland, and Benjamin Barratt. 2021. "Identifying Trends in Ultrafine Particle Infiltration and Carbon Dioxide Ventilation in 92 Vehicle Models." Science of The Total Environment. https://doi.org/10.1016/j.scitotenv.2021.152521.

₩ 🔿 🔂 N A Q T S

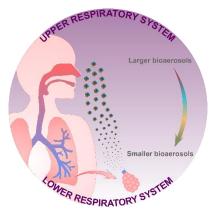
Understanding and managing VIAQ – Policy & Economics

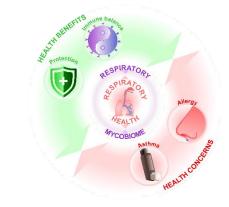
- Is VIAQ captured in vehicle purchasing decisions?
- What behavioural 'nudges' to cleaner VIAQ are effective?
- What policy levers can be used to improve VIAQ?

	onomy		Supermini Special
CO ₂ emission figu			
<100 A			
101-120 B			B 117 g/k
121-150	8		
161-185	0		
166-185	E		
186+	F		
A fuel cost figure indicates to the o calculated by using the combined o calculated annually, the current cor (VCA May 2004).	ed) for 12,000 miles oreanner a guide foal price for compar trive cycle (town centre and motorway et per litre is as follows - petrol 76p. d) and average fuel price. Re-	£662
VED for 12 months Vehicle excise duty (VED) or road	tax varies according to the CO ₂ emiss	ions and fuel type of the vehicle	£85
CO ₂ is the main greenhou	use cas responsible for alph	al warming	
Make/Model: Supermin		Engine Capacity (c	
Make/Model: Supermin Fuel type: Diesel			c): 1399 5 speed manual
Make/Model: Supermin Fuel type: Diesel Fuel Consumption:		Engine Capacity (c Transmission :	
Make/Model: Supermin	i Special	Engine Capacity (c Transmission :	5 speed manual
Make/Model: Supermin Fuel type: Diesel Fuel Consumption: Drive cycle Urban	i Special	Engine Capacity (c Transmission :	5 speed manual
Make/Model: Supermin Fuel type: Diesel Fuel Consumption: Drive cycle	i Special Litres/100km 5.4	Engine Capacity (c Transmission :	5 speed manual
Make/Model: Supermin Fuel type: Diesel Fuel Consumption: Drive cycle Urban Extra urban Combined Carbon dioxide emission	i Special Litres/100km 5.4 3.8 4.4	Engine Capacity (c Transmission :	5 speed manual Mpg 52 3 74.3 54.2



What research is needed to understand and manage air pollution exposure in indoor public spaces and transport environments:


Bioaerosols

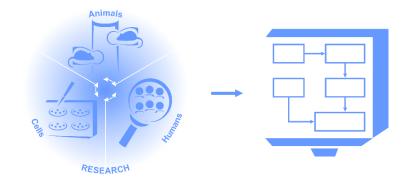

E Marczylo, P Douglas

(Fungal) bioaerosols

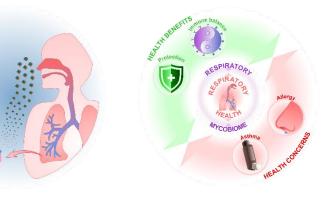
Systematic reviews and epidemiology

Pearson *et al*, 2015, J Toxicol Environ Health B Crit Rev,18:43-69 Robertson *et al*, 2019, Int J Hyg Environ Health, 222:364-86 Douglas *et al*, 2016, Int J Hyg Environ Health, S1438-4639:30022-0 Douglas *et al*, 2018, Int J Hyg Environ Health, 221:134-173

Research communities and networks


http://metasub.org / https://bioairnet.co.uk/

Research needs



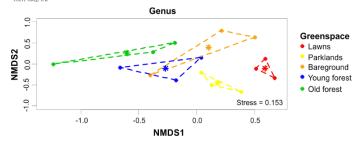
Toxicological profiling

Links with health data

4th Meeting of Clean Air Research Futures Group

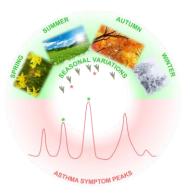
Interventions

Current work


Characterisation

Metabarcoding of Soil Fungi from Different Urban Greenspaces Around Bournemouth in the UK

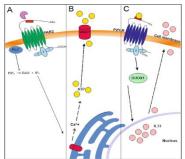
Emma L. Marczyloo,1 Sameirah Macchiarulo,1 and Timothy W. Gant

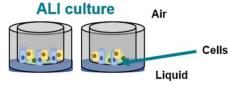

Toxicology Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Chilton, Oxfordshire OX11 ORQ, UK

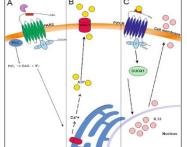
Links with health data

A real-time molecular epidemiological investigation into the contribution of fungal spores to seasonal asthma spikes

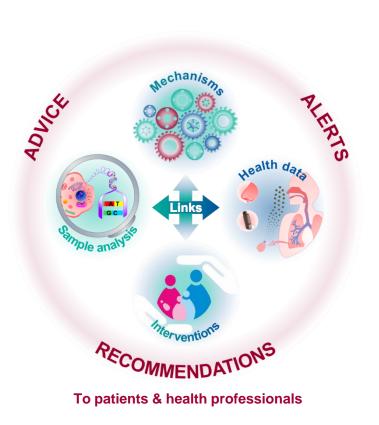
Sam Anees-Hill


Toxicological profiling


What drives allergic inflammatory responses to the known fungal allergens at the epithelial barrier in the lungs?


Emma-Jane Goode and Emma Marczylo

Human airways (bronchial region)



Ultimate aim

4th Meeting of Clean Air Research Futures Group

UK Health Security Agency

Imperial College NIHR London

Health Protection Research Unit in Environmental Exposures and Health at Imperial College London

Health Protection Research Units THANK YOU FOR LISTENING!