Long-term airborne measurements of pollutants over the UK, including during the COVID-19 pandemic, to support air quality model development and evaluation

Angela Mynard, Joss Kent, Eleanor R Smith, Andy Wilson, Kirsty Wivell, Noel Nelson, Matthew Hort, James Bowles, David Tiddeman and Justin M. Langridge

Why: Skilful representation of pollutant distributions throughout the atmospheric column is important to enable skilful prediction at the surface.

- Requirement for model evaluation at elevated altitudes
- Bonus use: A unique resource to explore changes in atmospheric composition associated with reduced emissions during the COVID-19 period.

MOASA

Crew Flight endurance	1 pilot, 1 mission scientist, optional second pilot/observer Approximately 4 hours	CAPS - ProbeBackscatter LIDARCloud, Aerosol,Backscatter LIDARPrecipitationRemote sensing ofspectrometeraerosol and cloud
Nominal science speed	85 ms ⁻¹	Air Quality Box - PM ₁₀ /PM ₂₅
Max alt	25,000 ft whilst operating in	Aerosol Absorption and Black Carbon
Min alt	500ft, dependent on airspace restrictions, geography and meteorology	Iso-kinetic Inlet
Ascent rate	800 ft per minute	Aerosol Sampling
Decent rate	1000 ft per minute	
Effective horizontal sampling scale (1 Hz)	85 m	Nephelometer – Aerosol Scattering Temperature
Effective vertical sample scale (1 Hz)	4 m (ascent), 5 m (descent)	Humidity, Winds and Differential GPS

Sorties

+ 44 flights... so far + 100 hours of sampling) x2 (summer and winter) IOPs

Data:

- NetCDF
- Time synchronised, three-dimensionally geolocated time-series
- Calibrations and corrections applied (where applicable)
- Metadata
- Flags
- Instrument Database
- Configuration file
- On request (for now)

Met Office Urban Boundary Layer Spatial dependence South – North leg

M302 22-7-2021 10:37:45-12:21:48 15427:15427pt 2:2s 30sm 2508pr (2508row)

Range corrected lidar signal - channel 0

22 Jul 2021

- Technique clearly shows potential for comparing spatial structure of BL to model.
- Lacking a case with clear urban signal due to unfavourable meteorology (E wind).

Future work

- Finalise data
- Finalise preliminary evaluations (Long term pollutant changes observed over London during the COVID-19 pandemic and NO₂ concentration around Birmingham)
- April: removing the science kit and decommissioning the aircraft.

Questions?

Angela.Mynard@metoffice.gov.uk

Joss.kent@metoffice.gov.uk

Image: Tim Lewton,

Alto Aerospace,

The Clean Air programme is led by NERC and the Met Office, with Innovate UK, EPSRC, ESRC, MRC, NPL & Defra as delivery partners.